An overpartition analogue of q-binomial coefficients, II: Combinatorial proofs and (q,t)-log concavity

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN OVERPARTITION ANALOGUE OF THE q-BINOMIAL COEFFICIENTS

We define an overpartition analogue of Gaussian polynomials (also known as q-binomial coefficients) as a generating function for the number of overpartitions fitting inside the M ×N rectangle. We call these new polynomials over Gaussian polynomials or over q-binomial coefficients. We investigate basic properties and applications of over q-binomial coefficients. In particular, via the recurrence...

متن کامل

On the q - log - Concavity of Gaussian Binomial Coefficients 335

We give a combinatorial proof that k l-k-1 l + t q q q q a polynomial in q with nonnegative coefficients for nonnegative integers a, b, k, lwith a>~b and l~>k. In particular, for a=b=n and l=k, this implies the q-log-concavity of the Gaussian binomial coefficients k , which was conjectured q by BUTLER (Proc.

متن کامل

Q-analogue of a Linear Transformation Preserving Log-concavity

Log-concave and Log-convex sequences arise often in combinatorics, algebra, probability and statistics. There has been a considerable amount of research devoted to this topic in recent years. Let {xi}i≥0 be a sequence of non-negative real numbers. We say that {xi} is Log-concave ( Log-convex resp.) if and only if xi−1xi+1 ≤ xi (xi−1xi+1 ≥ xi resp.) for all i ≥ 1 (relevant results can see [2] an...

متن کامل

Rainbow supercharacters and a poset analogue to q-binomial coefficients

This paper introduces a variation on the binomial coefficient that depends on a poset and interpolates between q-binomials and 1-binomials: a total order gives the usual q-binomial, and a poset with no relations gives the usual binomial coefficient. These coefficients arise naturally in the study of supercharacters of the finite groups of unipotent upper-triangular matrices, whose representatio...

متن کامل

Combinatorial proofs of a kind of binomial and q-binomial coefficient identities

We give combinatorial proofs of some binomial and q-binomial identities in the literature, such as ∞ ∑ k=−∞ (−1)kq(9k2+3k)/2 [ 2n n + 3k ] = (1 + q) n−1 ∏ k=1 (1 + q + q) (n ≥ 1),

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 2018

ISSN: 0097-3165

DOI: 10.1016/j.jcta.2018.03.011